Учёные подтвердили, что размер протона меньше, чем считалось раньше

Ускоритель частиц, который был использован в работе немецких учёных (фото Paul Scherrer Institute).

Ускоритель частиц, который был использован в работе немецких учёных (фото Paul Scherrer Institute).
(фото Paul Scherrer Institute).

В 2010 году немецкие физики в своей работе сделали вывод, что диаметр протона на 4% меньше, чем предполагалось ранее. Тогда открытие наделало немало шума. Интересно, какой теперь будет реакция учёных, ведь та же команда исследователей подтвердила свои результаты новыми экспериментами.

Одна из самых распространённых частиц во Вселенной – протон – оказалась одним из главных возмутителей спокойствия в мире физики. Ещё в 2010 году в журнале Nature были опубликованы результаты исследования, показавшие, что диаметр этой фундаментальной составляющей атомного ядра на 4% меньше, чем думали раньше. 

Учёный мир пребывал в недоумении и потратил более двух лет, чтобы объяснить это несоответствие. Новая работа ещё больше спутала карты, подтвердив, что реальный размер протона меньше, чем говорят расчёты, основанные на законах физики.

Отметим, что протон не имеет каких-либо чётко различимых границ, поэтому его размеры можно определить лишь по взаимодействию с вращающимися вокруг него частицами (например, электронами). В качестве основного объекта для вычисления диаметра этой положительно заряженной частицы традиционно выступал атом водорода

Простейший химический элемент состоит из одного протона и одного электрона. При этом электрон вращается вокруг протона на строго определённом расстоянии в зависимости от энергетического уровня. Электрон может перемещаться с одного уровня на другой, поглощая или выделяя энергию в виде фотонов света. Измеряя энергию фотонов, исходящих от возбуждённого атома водорода, физики могут определить допустимое положение орбиталей, и на основании законов квантовой физики рассчитать расстояние от них до протона. 

Впервые такие измерения были проведены в 1960-х годах. С тех пор считалось, что радиус протона равен 0,8768 фемтометра или менее одной триллионной миллиметра.

Проблемы начались после того, как о результатах своих измерений заговорила группа физиков, работающих под руководством Рандольфа Поля (Randolf Pohl) из Института квантовой оптики Макса Планка. Учёные с помощью ускорителя элементарных частиц бомбардировали атомы водорода мюонами. В результате эти нестабильные элементарные частицы, которые в двести раз тяжелее электронов и также имеют отрицательный заряд, вытеснили электроны, заняв их места. Из-за большей массы мюон вращается гораздо ближе к протону и более чувствителен к его диаметру. Поэтому измерения, основанные на таком взаимодействии, гораздо точнее.

В 2010 году Поль и его коллеги впервые опубликовали уточнённый размер протона, равный 0,8418 фемтометра. В обычной жизни разница в 0,00000000000003 миллиметра практически неощутима, но только не в вопросах квантовой физики, где погрешность обычно не превышает долей процента.

Два года спустя та же команда исследователей провела повторные исследования. Как сообщается в статье, опубликованной в журнале Science, учёные также получили мюонные атомы водорода, но на этот раз с помощью лазера переводили тяжёлые отрицательные частицы на другие орбитали, чтобы сделать расчёты на основании нового набора энергетических уровней.

Учёные утверждают, что последние измерения были на порядок точнее, чем в 2010 году. Однако диаметр протона оказался равен 0,8408 фемтометра, что почти полностью соответствует предыдущему результату.

Однако физики так и не нашли точного ответа на вопрос: откуда взялась разница в 4%? В октябре 2012 года в Италии прошёл специальный семинар, в котором приняли участие 50 экспертов по протонам со всего мира. В результате специалисты сошлись во мнении, что между электронами и мюонами существуют некоторые различия, которые находятся вне стандартных физических моделей. Именно они влияют на получаемый результат.

Учёные надеются, что разгадка тайны будет найдена в течение последующих двух-трёх лет. Возможно, что-то прояснится после экспериментов с измерением энергетических уровней в мюонных атомах гелия, которые планируется провести в ближайшие два года.

Также по теме:
На Большом адронном коллайдере, возможно, получен новый тип материи
Сделан важный шаг на пути к управляемому термоядерному синтезу
Учёные впервые различили химические связи внутри молекулы
Смоделирована химическая связь, которая может существовать только в космосе