Физики охладили молекулы до рекордно низких температур

Физики охладили целые молекулы до рекордно низких температур

Физики охладили целые молекулы до рекордно низких температур
(фото Michael Helfenbein).

Охладить молекулы практически до абсолютного нуля очень сложно. Но учёные из Йельского университета добились рекордно низкой температуры с помощью магнитного поля, оптического захвата и лазеров.

Учёные из Йельского университета охладили молекулы до рекордно низкой температуры. Физики использовали магнитооптический захват и лазеры. Разработанная система позволила понизить температуру монофторида стронция до 2,5 тысячных долей градуса выше абсолютного нуля (минус 273,15 градуса Цельсия или 0 градусов Кельвина).

"Теперь мы можем начать изучать химические реакции, которые происходят при температуре, близкой к абсолютному нулю, – поясняет, зачем был проведён рекордный эксперимент, профессор физики и ведущий автор исследования Дейв ДеМилль (Dave DeMille). – У нас есть шанс узнать фундаментальные химические механизмы".

Магнитооптический захват — технология, широко применяемая в атомной физике, но, как правило, на уровне одного атома. Технология использует лазеры для одновременного охлаждения частиц и удержания их на месте.

"Представьте себе, что у вас есть миска с небольшим количеством мёда, – объясняет ДеМилль. – Если вы бросите в неё несколько маленьких шариков, то они завязнут и скопятся на дне. В ходе нашего эксперимента роль мёда исполняли лазерные лучи и магнитные поля".

До сих пор колеблющиеся и вращающиеся молекулы было непросто зафиксировать таким образом. В большинстве более ранних работ сначала охлаждались атомы, а затем из них "собирались" молекулы. Специалисты Йельского университета охлаждали непосредственно молекулы.

С монофторидом стронция они экспериментировали по той причине, что энергия колебаний его меньше, чем у многих других молекул. Кроме того, физики подобрали цвет лазера так, чтобы его воздействие не вызывало вращение молекул.

ДеМилль и его коллеги сконструировали свой собственный аппарат в подвальной лаборатории. Это сложная машина со множеством проводов, компьютеров, электрических компонентов, настольных зеркал и криогенных холодильных установок. В процессе используется десять лазеров, каждый — с контролируемой длиной волны.

Молекулы монофторида стронция выстреливали из криогенной камеры и формировали группу, которая замедлялась с помощью лазера. По словам учёных, это было похоже на попытку замедлить шар для боулинга шариками для пинг-понга, причём это нужно было сделать быстро и многократно.

Замедленные молекулы попадают в магнитное поле, где перекрёстные лазерные лучи проходят через центральную область вдоль трёх взаимно перпендикулярных осей. Так монофторид стронция и попадает в ловушку.

"Квантовая механика позволяет нам провести охлаждение и применить силу, которая оставляет молекулы парить в почти идеальном вакууме", – говорит ДеМилль.

Такое экстремальное охлаждение можно считать важной вехой в истории физики: оно даст базу для новых исследований в различных областях, от квантовой химии до основных теорий физики элементарных частиц.

Подробнее о работе рассказывает статья в журнале Nature.

Также по теме:
На Большом адронном коллайдере поставлен мировой рекорд температуры
На МКС создадут самое холодное место во Вселенной
Квантовое состояние при комнатной температуре удержали 39 минут
Физики измерили самую слабую силу, приблизившись к стандартному квантовому пределу
Учёные впервые различили химические связи внутри молекулы
Французы создали первый одномолекулярный светодиод
Давление и температура превратили поваренную соль в химически невозможные формы