Ученые расшифровали самый длинный геном

Ладанная сосна √ дерево с крупнейшей последовательностью генов, расшифрованной на сегодняшний день

Ладанная сосна √ дерево с крупнейшей последовательностью генов, расшифрованной на сегодняшний день
(фото Ron Billings/Texas A&M Forest Service).

Pinus taeda √ одно из наиболее коммерчески важных деревьев в США, оно служит источником сырья для бумажной продукции

Pinus taeda √ одно из наиболее коммерчески важных деревьев в США, оно служит источником сырья для бумажной продукции
(фото Rob Carr/The Augusta Chronicle/Zuma Press).

Ладанная сосна √ дерево с крупнейшей последовательностью генов, расшифрованной на сегодняшний день
Pinus taeda √ одно из наиболее коммерчески важных деревьев в США, оно служит источником сырья для бумажной продукции
На настоящий момент геном ладанной сосны – крупнейший из когда-либо секвенированных: он содержит 22,18 миллиардов пар оснований, что в 7 раз больше, чем у человека. Чтобы разобраться в генах столь "богатого" растения, учёным пришлось разработать новый метод расшифровки ДНК.

Внушительная последовательность генов ладанной сосны (Pinus taeda) была расшифрована интернациональной исследовательской группой, возглавляемой учёными из Калифорнийского университета в Дэвисе (UC Davis). Эта сосна является одним из наиболее коммерчески важных видов деревьев в США и источником сырья для американской бумажной промышленности.

Её геном – крупнейшая последовательность и наиболее полный из расшифрованных на сегодняшний день геномов хвойных деревьев. Он содержит 22,18 миллиардов пар оснований, что в 7 раз больше, чем у человека. Секвенирование, правда, было проведено с помощью быстрого и эффективного аналитического метода.

Расшифрованная последовательность генов поможет учёным получить улучшенные сорта ладанной сосны, которые создаются для использования в качестве сырья для биотоплива. Также секвенирование генома поможет в понимании эволюции и биоразнообразия растений.

"Этот геном огромен, – говорит Дэвид Нил (David Neale), ботаник из Калифорнийского университета в Дэвисе, возглавивший исследование. – Однако задача не только в том, чтобы получить все данные о последовательностях. Необходимо ещё верно собрать их, привести последовательность в порядок".

Огромные размеры генома ладанной сосны до недавнего времени были препятствием для секвенирования. Однако теперь исследовательская группа использовала новый метод, который может ускорить сборку генома, сжимая необработанные данные о последовательности в сотню раз.

Современные методы секвенирования генома позволяют относительно легко читать отдельные "буквы" ДНК, но лишь в коротких фрагментах. В случае ладанной сосны нужно было сопоставить друг с другом 16 миллиардов отдельных фрагментов – настоящая вычислительная головоломка.

"Мы смогли собрать геном человека и это казалось пределом наших возможностей, – рассказывает Стивен Зальцберг (Steven Salzberg), профессор медицины и биостатистики из университета Джона Хопкинса. – Этот геном оказался в семь раз больше".

Для столь трудоёмкой задачи было решено использовать новый метод, разработанный специалистами из университета штата Мэриленд (University of Maryland), в котором данные последовательности предварительно обрабатываются, что устраняет избыточность и даёт в 100 раз меньше данных. Этот подход был испытан в данном исследовании впервые и позволил команде собрать гораздо более полную последовательность, нежели это удавалось другим исследовательским группам с другими хвойными породами.

"Размер участков последовательности, расшифрованных нами, на порядки больше, чем те, что были изучены когда-либо ранее", – сказал Нил, отметив при этом, что расшифрованный геном ладанной сосны значительно упростит работу грядущих проектов по расшифровке геномов хвойных.

Вся информация о ДНК ладанной сосны, полученная с начала проекта (с июня 2012 года), выкладывалась в открытый доступ, принося пользу научно-исследовательскому сообществу ещё до завершения и публикации результатов.

Секвенирование подтвердило, что 82% генома ладанной сосны составляют дублированные элементы ДНК и другие повторяющиеся фрагменты (у человека – всего 25%). Также учёным удалось выявить расположение и функции некоторых генов, например, тех, что могут быть вовлечены в борьбу с патогенами. Эта информация поможет изучить устойчивость растения к болезням.

Исследователи из лесной службы Южного института лесной генетики (Southern Institute for Forest Genetics) определили важный ген, обеспечивающий сопротивление фузиформной ржавчине – самой разрушительной болезни южных сосен. Молекулярное понимание генетической устойчивости – ценный инструмент для землепользователей, позволяющий выбирать те сосновые сеянцы, что будут развиваться в здоровые насаждения.

Как отмечают авторы работы, теперь, когда открыты её генетические тайны, ладанная сосна стала ещё более значимым для науки растением. С её помощью учёные надеются создать новые источники биомассы, а также разработать способы повышения поглощения растениями углекислого газа и, как следствие, смягчения последствий климатических изменений.

Научные статьи, освещающие основные результаты работы, опубликованы в изданиях Genetics (1 и 2) и Genome Biology.

Также по теме:
Обезопасить воду от кишечной палочки поможет сосна
Аромат соснового леса противостоит изменению климата
Китайские учёные расшифровали геном домашней козы
Установлено, какие гены современный человек унаследовал от неандертальцев
Учёные исследуют геном короля Ричарда III
Расшифровка генома неоплодотворённых яйцеклеток стала реальностью