Физики построили первый в мире спектрометр на квантовых точках

На иллюстрации показано, как пять различных коллоидных растворов квантовых точек наносятся на существующую камеру

На иллюстрации показано, как пять различных коллоидных растворов квантовых точек наносятся на существующую камеру
(фото Mary O.Reilly).

Команда китайских физиков во главе с Джи Бао (Jie Bao) из Университета Цинхуа совместно с исследовательской группой из Массачусетского технологического института разработала первый в мире компактный спектрометр на квантовых точках. По словам создателей, лёгкое миниатюрное устройство, которое гораздо бюджетнее аналогов, может быть использовано даже в камерах смартфонов.

Также подобные спектрометры на квантовых точках могут найти широкое применение в фундаментальной науке, к примеру, для сбора исследовательских данных в рамках космических миссий. Или же устройства могут быть интегрированы в датчики обычной бытовой техники.

Спектрометрия, по сути, направлена на измерение интенсивности света в зависимости его от длины волны и используется для изучения различных свойств светоизлучающих и поглощающих свет веществ и материалов. Например, данная методика часто используется планетологами и астрономами для определения химического состава далёких планет и звёзд, где другие методы исследования попросту недоступны.

Большинство методов спектроскопии включают в себя рассеяние света в соответствии с его длиной волны. Так, к примеру, призмы могут быть использованы для того, чтобы разложить излучение на составляющие его длины волн (цвета), а полученный спектр может быть измерен при помощи чувствительных к свету детекторов.

Бао и его коллеги разработали инновационную методику спектрометрии, основанную на работе квантовых точек. Учёные создали массив полосно-пропускающих фильтров для света, через который проходит излучение, а затем попадает в позиционно-чувствительный детектор.

Квантовые точки представляют собой крошечные "капли" полупроводника диаметром в несколько нанометров. Также их иногда называют искусственными атомами, поскольку, как и обычные атомы, они поглощают и испускают свет лишь определённых длин волн. В отличие от атомов, однако, эти принимаемые и выдаваемые длины волн могут быть "настроены" путём простого регулирования размера квантовой точки.

Идея использовать массив квантовых точек для создания компактного спектрометра пришла в голову учёным после того, как они исследовали их применение в солнечных батареях и детекторах света.

"Я понял, что этот материал имеет уникальные свойства и что никакой другой материал не может с ним сравниться. Дело в том, что массив квантовых точек обладает крайне простым средством настройки оптического отклика", — рассказывает Бао в пресс-релизе MIT.

Физики сконструировали спектрометр на основе огромного массива квантовых точек 195 различных типов, который охватывает диапазон длин волн шириной в 300 нанометров. Изучая свет, который поглощали точки, учёные смогли определить относительную интенсивность различных длин волн в спектре падающего света.

Для создания массива учёные сделали коллоидную систему, поместив квантовые точки в раствор. Затем полученную смесь нанесли в качестве покрытия на отдельные пиксели цифровой камеры. Поскольку новая разработка совместима с уже существующими технологиями, утверждают разработчики, новый спектрометр может быть уже запущен в массовое производство, и стоимость его будет довольно низкой.

Новый спектрометр использует метод мультиплексирования который был впервые разработан для телекоммуникационной отрасли, чтобы позволить сразу нескольким сигналам передаваться по одному и тому же оптоволокну. Мультиплексирование уже используется для спектроскопии, но Бао утверждает, что предыдущие разработки не подходят для создания небольшого, недорогого и высокопроизводительного устройства.

"Именно коллоидные квантовые точки позволили совершить этот прорыв", — уверен Бао, чья статья вышла в журнале Nature.

Команда исследователей в данный момент занимается адаптацией своего детища под конкретные практические применения. Они уверены, что в скором времени их разработка превратит каждый смартфон в настоящий спектрометр, а стоимость космических миссий по изучению далёких планет и звёзд можно будет значительно сократить.