Биологи впервые внедрили механический датчик в клетку млекопитающего

Зигота мыши с внедрённым датчиком (показан ярко-зелёным цветом). Красным обозначены хромосомы.

Зигота мыши с внедрённым датчиком (показан ярко-зелёным цветом). Красным обозначены хромосомы.
Иллюстрация Anthony Perry.

Схема микробота, отслеживающего движения внутриклеточной жидкости.

Схема микробота, отслеживающего движения внутриклеточной жидкости.
Иллюстрация M. Duch et al./ Nature Materials (2020).

Зигота мыши с внедрённым датчиком (показан ярко-зелёным цветом). Красным обозначены хромосомы.
Схема микробота, отслеживающего движения внутриклеточной жидкости.
Учёные внедрили в живую клетку устройство, которое позволило проследить за течениями во внутриклеточной среде. Такой датчик поможет лучше изучить работу клетки. Возможно, благодаря этим знаниям человечество победит ныне неизлечимые заболевания.

Учёные внедрили в живую клетку устройство, которое позволило проследить за течениями во внутриклеточной среде. Такой датчик поможет лучше изучить работу клетки. Возможно, благодаря этим знаниям человечество победит ныне неизлечимые заболевания.

Достижение описано в научной статье, опубликованной в журнале Nature Materials группой во главе с Энтони Перри (Anthony Perry) из Батского университета.

Биологи давно предполагают, что течения во внутриклеточной среде (цитоплазме) – важная часть работы клетки. Но это движение почти не изучено, потому что до сих пор у исследователей не было для этого подходящих инструментов.

Теперь учёные из Испании, Великобритании и США совершили прорыв, впервые внедрив в клетку млекопитающего механический датчик.

"Это первый взгляд изнутри в таком масштабе на физику любой клетки, – утверждает Перри. – Впервые кто-то увидел изнутри, как вещество клетки перемещается и организуется".

Устройство, способное отслеживать течения внутриклеточной жидкости, выглядит очень просто. Больше всего оно напоминает решётку или двустороннюю расчёску. Это четыре продольные пластины длиной 22 микрометра и шириной 1,5 микрометра каждая. Посередине они соединены одной поперечной пластиной длиной 10,5 микрометра. Вся конструкция имеет толщину в 25 нанометров и состоит из кремния.

Схема микробота, отслеживающего движения внутриклеточной жидкости.

Подобный микробот – это своего рода паучок с восемью лапками. Когда это "членистоногое" оказывается внутри клетки, за движением его "лапок" можно наблюдать в микроскоп. А они настолько тонкие, что сгибаются и разгибаются под действием малейших течений в окружающей жидкости.

Чтобы испытать своих "агентов", исследователи буквально посадили их верхом на мышиные сперматозоиды и дали последним слиться с яйцеклетками. В результате получились оплодотворённые яйцеклетки (зиготы), внутри которых оказались созданные учёными устройства.

Биологи выбрали для первых экспериментов зиготы, поскольку они достигают ста микрометров в диаметре, что вдесятеро больше обычной мышиной клетки.

Наблюдения в микроскоп показали, что "паучки" действительно двигались. Их "конечности" сгибались и разгибались, отмечая этапы развития одноклеточного эмбриона перед делением.

"Иногда устройства были раскручены и скручены силами, превышающими даже силы внутри мышечных клеток, – рассказывает Перри. – В других случаях устройства двигались очень слабо, показывая, что внутренняя среда клетки стала спокойной.

В этих процессах не было ничего случайного. С момента, когда образуется одноклеточный эмбрион, всё происходит предсказуемым образом. Физика [развития эмбриона] запрограммирована".

Изучение внутриклеточной механики наверняка добавит важные кусочки к огромному пазлу под названием "функционирование живой клетки". А от того, насколько успешно он собирается, зависит как сама жизнь, так и успех в нашей борьбе с болезнями и старением.

Добавим, что ранее "Вести.Наука" (nauka.vesti.ru) рассказывали о том, как в ядро живой клетки впервые проникли нанокапсулы с химическим грузом. Писали мы и о первых измерениях температуры в митохондриях клеток.