Российский телескоп показал ядро галактики с рекордной детализацией

"РадиоАстрон" сформировал виртуальный телескоп размером в 8 диаметров Земли. На рисунке - сравнение полученного изображения галактики BL Lacertae с Солнцем или Альфа Центавра, если бы последние находились на том же расстоянии, что и BL Lacertae

"РадиоАстрон" сформировал виртуальный телескоп размером в 8 диаметров Земли. На рисунке - сравнение полученного изображения галактики BL Lacertae с Солнцем или Альфа Центавра, если бы последние находились на том же расстоянии, что и BL Lacertae
(иллюстрация MPIfR/А. Лобанов/перевод "Вести.Наука").

Радиоизлучение, исходящее от BL Lacertae. Изображение получено при наблюдениях на длине волны 1,3 сантиметра

Радиоизлучение, исходящее от BL Lacertae. Изображение получено при наблюдениях на длине волны 1,3 сантиметра
(иллюстрация J.L. Gomez et al., The Astrophysical Journal).

"РадиоАстрон" сформировал виртуальный телескоп размером в 8 диаметров Земли. На рисунке - сравнение полученного изображения галактики BL Lacertae с Солнцем или Альфа Центавра, если бы последние находились на том же расстоянии, что и BL Lacertae
Радиоизлучение, исходящее от BL Lacertae. Изображение получено при наблюдениях на длине волны 1,3 сантиметра
Наземно-космический интерферометр "РадиоАстрон" получил изображение ядра активной галактики с рекордным угловым разрешением в истории астрономии. Учёные получили новые интересные данные о выбросах вещества из окрестностей чёрных дыр.

Российский космический радиотелескоп "Радиоастрон" получил изображения с самым высоким угловым разрешением в истории астрономии. Работа велась совместно с 15 наземными радиотелескопами из России (сеть "Квазар-КВО"), Европы и США. Астрономы при этом наблюдали активное ядро галактики в созвездии Ящерицы ― объект BL Lacertae.

Учёные смогли разглядеть на полученной "картинке" особенности структуры джетов – гигантских струй вещества, которые выбрасывает сверхмассивная чёрная дыра, расположенная в центре этой галактики, и восстановить структуру магнитного поля.

Но прежде чем рассказывать о том, какой результат получили учёные, стоит объяснить, за счёт чего был достигнут рекордный показатель.

Интерферометрия со сверхдлинной базой (РСДБ или VLBI) используется в радиоастрономии с 1974 года, она основана на наблюдении одного и того же объекта с помощью нескольких независимых радиотелескопов, разделённых определённым расстоянием (его называют "базой") и "складывании" полученных сигналов.

Созданная таким образом "картинка" эквивалентна той, которую мог бы дать гигантский радиотелескоп с диаметром зеркала равным расстоянию между телескопами.

Развитие этого метода наблюдений долгое время сдерживалось физическим барьером – телескопы нельзя было разнести на расстояние большее, чем диаметр Земли. С конца 1970-х годов астрофизик Николай Кардашев и его коллеги разрабатывали проект наземно-космического интерферометра, который мог бы преодолеть это ограничение. В 2011 году этот проект был осуществлён, на орбиту был выведен космический аппарат "Спектр-Р". На нём был установлен радиотелескоп с диаметром зеркала 10 метров, что позволило создать самый большой в истории наземно-космический радиоинтерферометр с базой практически равной расстоянию до Луны.

С момента своего запуска "Радиоастрон" успешно работает, и учёные, получающие от него данные, организуют совместные проекты с коллегами, использующими крупнейшие радиотелескопы Земли.

В ходе сеанса наблюдений, проведённого на самой короткой длине волны интерферометра (1,3 сантиметра) с участием 15 наземных радиотелескопов, учёные смогли добиться рекордного углового разрешения – 21 микросекунда дуги.

В результате этих наблюдений удалось "разглядеть" структуры размером в шесть тысяч астрономических единиц (одна астрономическая единица соответствует расстоянию от Земли до Солнца). Это примерно в 30 меньше, чем облако Оорта в Солнечной системе и в 45 раз меньше, чем расстояние от Солнца до ближайшей звезды Альфа Центавра.

"Это более чем в тысячу раз лучше разрешения космического телескопа "Хаббл". Оптический телескоп с таким угловым разрешением мог бы разглядеть спичечный коробок на поверхности Луны", — поясняет руководитель научной программы проекта из Астрокомического центра ФИАН Юрий Ковалев.

Он и его коллеги наблюдали за поведением объекта BL Lacertae. Это блазар ― сверхмассивная чёрная дыра, окружённая диском плазмы, разогретой до температур в миллиарды градусов. Мощные магнитные поля и высокие температуры формируют джеты (выбросы) – струи газа длиной до нескольких световых лет.

Теоретические модели предсказывали, что из-за вращения чёрной дыры и аккреционного диска, линии магнитного поля должны формировать спиральные структуры, которые в свою очередь ускоряют поток вещества, выбрасываемого джетами. Учёным с помощью "Радиоастрона" удалось визуализировать эти спиральные структуры, а также зоны ударной волны в области формирования джета, что позволило лучше понять, как работают эти самые мощные во Вселенной источники излучения (пока ещё учёным известно о них не так много).

"Ядро галактики оказалось экстремально горячим. Если бы мы попытались воспроизвести эти физические условия на Земле, то получили бы зону с температурой более триллиона градусов", – прокомментировал результаты научный сотрудник Института радиоастрономии общества Макса Планка Андрей Лобанов.

Все подробности рекордного исследования — в статье, опубликованной в издании Astrophysical Journal.

Добавим, что проект "РадиоАстрон" осуществляется Астрокосмическим центром Физического института им. П.Н. Лебедева РАН и Научно-производственным объединением им. С.А. Лавочкина по контракту с Роскосмосом совместно с многими научно-техническими организациями в России и других странах.